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Specific heat jump in BCS superconductors
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Abstract. An exact analytical expression for the specific heat jump ∆C at the critical temperature Tc has
been obtained directly from the BCS gap equation for any shape of the energy dependent electronic density
of states (DOS). We consider a model which takes into consideration electron-electron repulsion, formulated
in the Hubbard model along with the electron-electron attraction due to electron-phonon interaction in the
BCS formalism. We have analyzed this expression for constant as well as for the Lorentzian forms of DOS.
It is shown that the constant DOS in the simple BCS theory cannot explain the large values of ∆C/Tc,
found in some superconductors. The specific heat versus temperature curve has been found to have a peak,
similar to that of Eliashberg theory of superconductivity. The influence of repulsive interaction is very
small and occurs mainly at higher temperatures.

PACS. 74.20.Fg BCS theory and its development – 74.20.-z Theories and models of superconducting state
– 74.25.Bt Thermodynamic properties

The specific heat is an important tool to investigate the
excitation pectrum in the superconducting state [1]. It
also informs us about the nature of phase transition [2]
and the symmetry of the pairing state [3]. The specific
heat is specially suitable to study the BCS superconduc-
tors [2]. For example all the parameters in the BCS for-
mula Tc = 1.14 θDe

−1/λ can in principle be determined
by a single specific heat measurement. It gives the critical
temperature, Tc, from the position of the jump, the De-
bye temperature, θD, from the slope of the specific heat
versus T 3 in the limit Tc → 0, and λ from the ratio of high
and low temperature values of the Sommerfeld constant.

In BCS theory the ratio, ∆C/Tc, is a constant
quantity. In many conventional superconductors like Pb
and Nb3Sn [4], in alkali doped fullerenes [5] and also in
high temperature cuprates superconductors [2] this ratio
has been found to be greater than the BCS value. Recently
the explanation of this discrepancy has been attributed
to the logarithmic van-Hove singularity in the normal
state electronic density of states (DOS) in the BCS
theory [6,7].

Here we consider a model which in addition to electron-
phonon induced attractive interaction between electrons,
takes into account a repulsive Coulomb interaction, formu-
lated in the Hubbard model. This model has recently been
considered by Hocquet et al. [9] to study the critical tem-
perature and the isotope effect. Within the Bogoliubov-
Valatin [10] approximation for the above model, one
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obtains the BCS gap equation as
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where, Ek = εk + Un/2 − εf, is the Hartree Fock one
particle energy, U is the repulsive intra-atomic interaction
of the Hubbard model, N is the total number of sites, n
is the average number of electrons per site, εk is the bare
particle energy in the band, and εf is the Fermi energy. We
shall measure the energy such that the sum of the Hartree-
Fock shift Un/2 and the energy of the middle of the band
is equal to zero. The width of the band is taken equal to
2W . Following BCS the scattering matrix element Vkk′

due to phonon mediated interaction is assumed to have a
nonvanishing value −V/N with V > 0 only if both |Ek|
and |Ek′ | are smaller than the Debye energy ~ωD.

The specific heat jump, ∆C, at the critical temper-
ature Tc is related to the temperature derivative of the
square of the gap parameter by the expression [11],

∆C = −
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where fk is the Fermi distribution function for electrons
of wave vector k at the critical temperature Tc. The tem-
perature derivative of the square of the gap parameter,
can be obtained from the numerical solutions of the BCS
gap equation. However, usually this derivative is obtained
from the approximate analytical expression for the gap
parameter near Tc. In this paper, we show that it is
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not necessary to have an explicit expression of the gap
parameter near Tc to obtain its derivative at Tc.

For the simple BCS form of the scattering matrix
element, as described above, the solutions of the BCS gap
equation (1) have the following structure

∆k = ∆1 if |Ek| < ~ωD,
= ∆2 if |Ek| > ~ωD. (3)

Upon substituting the solutions (3) in equations (1, 2),
one obtains the equations for ∆C, ∆1 and ∆2 as
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η(ε) is the electronic density of states (DOS) per spin,
α = 1, 2, and 〈η(ε)〉D and 〈η(ε)〉W are the thermally
averaged DOS, given as
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A simple algebraic manipulation of the set of equations (5)
shows that

∆2 = (1− V FD1 )∆1. (8)

Upon substituting the expression (8) for ∆2 in equa-
tions (5), we get

1 =

(
V −

U

1 + U(FW2 − F
D
2 )

)
FD1 . (9)

We shall use equations (8, 9) to calculate the temperature
derivative of the square of the gap parameters ∆1 and
∆2 at the critical temperature Tc in order to obtain the
specific heat jump ∆C. Differentiating equation (8) with
respect to T and taking the limit ∆1 → 0 as T → Tc
we get [
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Similarly differentiating equation (9) with respect to T
and taking the limits ∆1,∆2 → 0 as T → Tc we get
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and

U∗ =
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· (13)

Upon substituting
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from equation (10) in

equations (11, 4), we get[
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and the jump in the specific heat at Tc as

∆C = −
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Here V ∗ = V − U∗ and ξ = 1 − V FD. It is possible to
eliminate V from equation (14) by using the expression
for Tc which can be obtained from equation (9) by taking
the limits ∆1 → 0 and ∆2 → 0. It is given as

1− V ∗FD = 0. (16)

Substituting the value of U∗ from equation (16) in
equation (14) we get[
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U/2W = 0.4
U/2W = 0.2
U/2W = 0.0

Eq. (18)
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Fig. 1. ∆C/Tc (in units of
2π2k2

6W
) versus kTc/~ωD for con-

stant density of states.

It should be noted that equation (15), together with
equation (17), is an exact analytical expression for the spe-
cific heat jump ∆C within the BCS framework. It can be
used to check the validity of other results of ∆C, obtained
from the approximate expressions for the gap parameters.
For example, recently Nam [12] has calculated the specific
heat jump ∆C from the BCS gap equation in absence
of short range interactions by expanding the gap parame-
ter near Tc. Considering the constant DOS near the Fermi
energy and replacing the thermally averaged DOS 〈η(ε)〉D
by η(εf ), he showed that at ~ωD/2kTc = 2 the ra-
tio ∆C/Tc, is equal to 3.4γ compared to the BCS
value of 1.4γ. Here γ is the sommerfeld constant γ =
2π2k2η(ef )/3. Our exact results show that his results
are in error. For the constant DOS near the Fermi en-
ergy and the thermally averaged DOS 〈η(ε)〉D = η(εf ),
equations (12–17) show that in absence of repulsive
interaction U

∆C =
16η(εf )k2Tc tanh(~ωD/2kTc)∫ ~ωD/2kTc

−~ωD/2kTc dεQ(ε)
· (18)

From the above equation it is easy to show that in the
limit Tc → 0,

∆C

Tc
→

12

π2
∫∞

0
dεQ(ε)

= 1.43γ (19)

and in the limit Tc →∞,

∆C

Tc
→

18γ

π2
= 1.82γ. (20)

At intermediate temperatures ∆C/ Tc increases monoton-
ically with temperature as shown in Figure 1. Thus for the
constant DOS ∆C/Tc cannot reach the value of 3.4γ as
obtained by Nam [12].

The temperature dependence of thermal DOS 〈η(ε)〉D
and 〈η(ε)〉W , neglected in obtaining equation (18), is

b/W = 0.1

b/W = 0.2

b/W = 0.3
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Fig. 2. ∆C/Tc (in units of 2π2k2/6W ) versus kTc/~ωD
for the normalized Lorentzian density of states, ρ(ε) =

1

2 tan−1(
w

b
)

b

ε2 + b2
, for various values of b/W and U/2W . The

solid line corresponds to U/2W = 0.0, the dashed line corre-
sponds to U/2W = 0.2 and the small dashed line corresponds
to U/2W = 0.4.

to reduce ∆C/ Tc and produce a peak at kTc/~ωD =
0.24 in absence of repulsive interaction U . As shown in
Figure 1 this behavior of ∆C/ Tc is very similar to that
of Marsiglio et al. [13] and Carbotte [14], obtained by us-
ing Eliashberg theory of superconductivity. In presence
of the repulsive interaction U , ∆C/ Tc depends upon the
position of the Fermi energy. We have performed calcu-
lations for the Fermi energy located at zero of our en-
ergy scale. As shown in Figure 1, the effect of repulsive
interaction U is very small. Visible effect occurs only
at higher temperatures where it increases ∆C/ Tc. In
Figure 2 we have plotted ∆C/ Tc versus kTc/~ωD for
normalized Lorentzian DOS. It is found that ∆C/ Tc
increases as the sharpness of the Lorentzian DOS peak
increases (or the width of the Lorentzian DOS peak
decreases). Similar result was found by Tsuei et al. [6]
in absence of the repulsive interaction U . The effect of
U is again very small but increases as the sharpness of
the peak increases. This negligible effect of U can also
be seen directly from equation (17). In this equation the
effect of U on ∆C/ Tc over the BCS value appears in sec-
ond or higher order power of U . Thus for small U (the
regime of the validity of the Hartree-Fock approximation)
the change in ∆C/ Tc over the BCS value is expected
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to be small for any form of the DOS. However, the correla-
tion effects which are relevant for high Tc superconductors
may change this conclusion. In this case one may also re-
quire to consider the DOS with Van-Hove singularity and
the d-wave pairing.

Thus we have shown that one can obtain an exact
analytical expression for the jump in specific heat at Tc
directly from the BCS gap equation. The analysis of this
expression shows that the constant DOS in the conven-
tional BCS theory cannot explain the large values of
∆C/Tc found in many superconductors. Also the electron-
electron repulsive interaction treated within Hartree-Fock
approximation [10] does not give any appreciable enhance-
ment of the ratio ∆C/T over BCS value. To explain the
higher values of ∆C/ Tc within the BCS framework, one
may need to take into account the energy dependent den-
sity of states with sharper peak at the Fermi level.
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